
JOURNAL OF COMPUTATIONAL PHYSICS 47, 352-374 (1982) 

High Level Continuity for Coordinate 
Generation with Precise Controls 

PETER R. EISEMAN* 

Department of Applied Physics and Nuclear Engineering, 
Columbia University, New York, New York 10027 

Received November 20, 198 1 

The development of precisely controlled coordinate generation techniques is continued from 
a first study to include the higher order smoothness which is necessary for three-dimensional 
applications. In the first study, the controls came from the use of local piecewise linear inter- 
polants in the general multisurface transformation. The consequent integration therein resulted 
in coordinates with continuity up to first derivatives and with the capability to prescribe 
uniformity either locally or globally for the family of transverse coordinate curves. The 
admission of uniformity placed a constraint upon the general interpolants which was trivially 
satisfied in the piecewise linear case. With smoother piecewise constructions, the constraint is 
used herein along with a requirement for coordinate curves to have the most general possible 
curvature properties. The result is a class of coordinate transformations with continuity 
extended up to higher derivatives that retains the precise local controls displayed in the first 
study and that can be used in three or more dimensions. 

The present study is a continuation in the development of precise controls for coor- 
dinate generation. Precise controls were established in the first study [ 1] when local 
piecewise linear interpolants t,uk were employed within the context of the general 
multisurface transformation. With N surfaces, an interpolant is assigned to each point 
rk of a partition rl < r2 < ..a < r,,-, for the independent variable r that is transverse 
to the surfaces. Each partition point corresponds to a space between the N surfaces 
P,(t), P*(t),..., PN(t) that are ordered from bounding surface to bounding surface and 
that are parameterized by a common surface coordinate vector t. For general inter- 
polants wk, the multisurface transformation P(r, t) is given by 
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where 

and each vk(ri) vanishes unless k = i. In the first study, an admissibility condition for 
r-direction uniformity was established as a constraint on the general interpolants ‘y, 
which is given by 

Inadmissible interpolants could not be used to prescribe a uniform distribution of the 
constant r coordinate surfaces even on a local basis. Such prescriptions formed the 
foundation from which mesh structures could be specified over regional volumes. 
With the local piecewise linear interpolants that were examined there in detail, the 
admissibility of uniformity was trivially satisfied. The interpolants were nonvanishing 
on the smallest possible interval defined by the partition points rk and belonged to the 
class Co of continuous functions. From the multisurface integration of Eq. (lb), the 
coordinates belonged to the continuity class C’ of continuous (vector) functions with 
continuous first derivatives. The C ’ coordinates are, however, generally applicable 
only for two-dimensional systems. In three dimensions, only special cases such as 
rotationally symmetric systems can be considered. 

When a numerical solution is contemplated for a boundary value problem with a 
fully three-dimensional configuration or with a need for second derivatives of 
geometric quantities, the local Co interpolates that were examined previously [ 1 ] 
must be replaced by local C’ interpolates. The local C ’ interpolates clearly lead to 
C* coordinates due to the substitution into the integrands of the multisurface transfor- 
mation. With a C2 transformation, each coordinate curve is continuously differen- 
tiable up to second order; hence, the coordinate curve curvature can be continuous 
(cf. [2]). In addition, for points with nonvanishing curvature, the Frenet frame 
attached to the curve can also be continuously defined; the implication is that a coor- 
dinate curve can continuously bend out of a plane, as opposed to being constrained to 
a plane or leaving a plane only with vanishing curvature. For the out-of-plane 
bending to be differentiable, another derivative of the coordinate transformation 
would be needed in order to define the torsion of the coordinate curves. On segments 
with vanishing torsion, a curve is constrained to a plane; otherwise, it is bending out 
of the plane. In view of the fact that coordinate curves in three dimensions generally 
would not be constrained to planes (even locally), the minimum requirement for coor- 
dinate generation in three dimensions would be that the bending process is 
continuous; hence, the coordinate transformation must at least be of class C’. In the 
present study, the transformations are developed for continuity levels of C* and 
higher. The emphasis is placed on C*, which yields the simplest generally applicable 
methods for three dimensions and which has controls that are more local than for the 
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higher levels. At each level, the size of each region (between partition points of r) and 
the shape of each interpolation function is chosen so that certain important properties 
such as uniformity in I are admissible. In the C* case, the curvature of coordinate 
curves in r is a property that is not to depend overly on the C ’ interpolants. The 
assumption here is that flat spots are not to appear arbitrarily from the construction 
process. Under the general constraint of simplicity, the C* coordinates are developed 
in detail and the subsequent forms for higher continuity levels are taken as 
continuations from the established pattern. 

THE FORM OF THE C' INTERPOLATES 

Although it is possible to arbitrarily construct interpolation functions which vanish 
outside of local intervals determined by the partition points and which are continuous 
up through first derivatives, the family of interpolation functions derived from such 
an unconstrained construction will in general not lead to a system of multisurface 
coordinates where uniformity in the distribution of constant Y surfaces can be 
specified or where unspecified flat spots (vanishing curvature) can be prevented along 
coordinate curves in the r variable. To construct only those coordinate systems where 
uniformity can be specified and where flat spots do not arbitrarily appear, the family 
of interpolation functions must be suitably constrained. To further require that the 
local intervals are as small as possible will result in a basic family of interpolates. 
Since an interpolate for the multisurface transformation must vanish at all partition 
points except one, the smallest possible interval would be determined by at least three 
successive partition points. The reason is that the nonvanishing at a partition point 
will extend by continuity to either side of the point. This extension by continuity is 
meaningful only when the point is not one of the endpoints r, or r,-, . Since the 
interpolates at endpoints are essentially truncated versions of an interior interpolate, 
the discussion will focus only on interpolants at interior points. 

Suppose now that the smallest possible interval associated with any interior 
partition point rk is precisely the interval from rk- I to rk+ , . A schematic illustration 
of the interpolation function wk is then given in Fig. 1. Since wk vanishes outside of 
the interval [rk-l, rk+l] and is a continuous function with continuous first 
derivatives, its function values and first derivatives must vanish at rk-, and rk+ , . The 

FIG. 1. A Cl interpolation function over three partition points. 
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only other interpolation functions which do not vanish on the interval [rk- i, rk+ 1 ] are 
interpolation functions vk-, and vk+, that are respectively centered about the 
endpoints of the interval. By the same reasoning, both function values and first 
derivatives of I,v~- I and wk + i must vanish at rk. Consequently, the only possibility for 
the entire interpolation to have a nonzero first derivative at rk is for vk to have a 
nonzero first derivative at rk. In terms of the multisurface transformation, the 
variable r coordinate curves have a nonzero second derivative at rk only if the first 
derivative of I,V~ is nonzero at rk. Since the curvature of the coordinate curves is 
directly proportional to the normal component of the second derivative, only a 
nonzero first derivative of wk at rk can prevent the appearance of a flat spot 
(vanishing curvature) at rk. Now, to obtain a uniform distribution of the constant r 
coordinate surfaces, the variable r coordinate curves must first be projected along a 
sufficiently smooth vector field which can be used as a reasonable measure for the 
desired uniformity. Uniformity is then achieved when the variable r is a linear 
function of the arc length along the vector directions. For uniformity to be possible, 
the condition upon the interpolation functions is given by Eq. (2). To specify local 
uniformity in a neighborhood of rk, the condition must be satisfied there, and in 
particular, the derivative of Eq. (2) must also be satisfied at rk. Since Wk(rk) # 0, 
however, the derivative t&.(r,J must then vanish, which in turn contradicts the desire 
not to have a flat spot arbitrarily appear at rk. Consequently, to admit the possibility 
of uniformity and to avoid any unspecified flat spots, the size of the interval in the r 
variable must be increased to extend beyond a sequence of three partition points. By 
symmetry, the interval for r must be determined by at least five successive partition 
points with shorter intervals only near the boundaries rl and r,-, due to an obvious 
truncation for each of the two closest interpolation functions to each boundary. For 
reference, the above discussion is summarized in the following theorem: 

THEOREM 1. Let r, < rZ < ‘a. < r,- , be a partition for the multisurface transfor- 
mation and let g be the class of all real valued functions which are defined on the 
interval r, < r < r,_ , and which satisfy the following properties: 

(1) The functions and their first derivatives are continuous; 

(2) Each function is nonzero on only one partition point;’ 

(3) Unspectfied flat spots do not appear along the coordinate curves in 
variable r; 

(4) A uniform distribution of the constant r coordinate surfaces can be 
spectj?ed either locally or globally; and, 

(5) The intervals on which each function does not vanish are as small as 
possible. 

For any function f in @, let D(f) be the domain (r 1 f(r) # 0) of nonvanishing values. 

’ This condition is the cardinality property required by the multisurface transformation. It is needed: 
otherwise, the normalization process in the multisurface transformation would be lost. 
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Then, among the intervals determined by partition points, the smallest interval 
containing D(f) must be selected from: 

LrIT r3]9 LrIy r4]9 LrIy r5]~-~ [rk-2T rk+2 ,..., 1 [rN-S,rhJ-ll, [rN--4,rN-11, [rN--3,rN-,l 
or a larger interval which strictly contains one of these listed intervals. 

In three dimensions, the minimum interval size derived above is particularly 
evident on purely geometric grounds. To see why, suppose that the smaller interval 
lengths are used, and consider values of r between rk and rk+ i for some fixed k. Then 
the vector field interpolation consists of only contributions from vk and wk + , ; conse- 
quently, the multisurface transformation reduces to a linear combination of the 
vectors P,, (Pk+, - Pk), and (Pk+2 - Pk+J which can be rewritten as a linear 
combination of P,, Pk+ ,, and Pk+2. The implication here is that for rk < r < rk+ , , 
the coordinate curve in the variable r lies in the plane determined by these three 
points. For an adjoining interval, a similar arguement implies that there is a similar 
three point dependence. For example, with k > 1 the curve depends only on P,- , , P,, 
and Pk+i when rk-l<r<rk. Now if the vectors Pk-r, P,, Pk+,, and Pkf2 are not 
coplanar, then the planar restrictions on either side of rk would imply that the unit 
normal and binormal vectors are discontinuous at rk. Also at rk, the coordinate curve 
passes through the intersection of the planes, and moreover, by direct calculation, 
both first and second r-derivatives of the transformation are proportional to 
P k+, - P, and are continuous. Since the second arc length derivative is proportional 
to a linear combination of the first and second r-derivatives, and in addition, is equal 
to the product of curvature with the unit normal vector, the curvature must vanish 
because of the orthogonallity between tangent and normal vectors. Here, the discon- 
tinuous unit normal vector at rk can be taken as the limiting value from either side of 
rk. An illustration of the problem is given by the example in Fig. 2. 

;: 
kfl 

J i: 
IT-- k+z 

FIG. 2. Example of a three-dimensional coordinate curve with local basis functions which vanish off 
. intervals determined by only three successive partition points. 



CONTINUITY FORCOORDINATE GENERATION 357 

In the figure, a coordinate curve in the variable r is given where, P, is the origin, 
P k-, is on the positive x axis, Pk+ 1 is on the positive z axis, and Pk+ Z is in the y - z 
plane along a line from Pk+, which is parallel to the y axis. As r goes from rk-, to rk 
the curve leaves the x axis, remains in the x-z plane, and approaches the z axis 
where it has a tangent vector in the positive z direction. As r goes from rk to rk+,, 
the curve leaves the z axis with the same tangent in the positive z direction, remains 
entirely in the y - z plane, and approaches the line from P,, I which is parallel to the 
y axis. The unit normal vectors are contained in the x -z plane for r < rk and in the 
y - z plane for r > rk. The result is a 90 degree rotation of the normal vector about 
the tangent direction (z axis) at rk. A similar rotation is also observed for the unit 
binormal vectors which are constants respectively parallel to the y and x axes. Since 
the arc length derivative of the unit binormal vector vanishes on either side of rk, the 
torsion of the curve, from its definition, also vanishes. At rk, the torsion is clearly 
undefined. Analytically, three derivatives would be needed. With the exception of the 
analytically observed vanishing of curvature at rk, the example illustrates the 
constraints placed upon the interpolation functions when three-dimensional 
applications are considered. For three-dimensional applications, Theorem 1 can then 
be restated as follows: 

THEOREM 2. If the requirement for unij7ormity in Theorem l(4) is replaced by a 
requirement for applicability to three dimensions, then the conclusion of Theorem 1 is 
again true. 

From the conclusion above, that the interpolation functions must nontrivially 
extend over intervals which can be no smaller than a certain size, there is no 
condition on the complexity of the functions. Without any assumptions, they can 
have any arbitrarily large number of local extrema whether or not they are 
constrained to the smallest permissible intervals. For simplicity, the candidate inter- 
polation functions will now be assumed to have a minimal number of extrema, to be 
constrained to the smallest intervals which may be permissible, and to have 
maximum values at points of interpolation. In geometric terms, the latter condition 
may be thought of as a requirement that each function be well centered about the 
partition point associated with its interpolatory contribution. In Fig. 3, the form of 
the candidate interpolation functions are illustrated for each partition point. The most 
complete function is the interpolation function I+V~ corresponding to the partition point 
rk for 2 < k < N- 2. From the illustration in Fig. 3c, this interior function wk is 
easily seen to have three extrema: a maximum at rkr a minimum to the left of rk-, , 
and a minimum to the right of rk+ , . Since wk must vanish at partition points unequal 
to rk, the minimum values must either be negative or zero. A minimum value of zero, 
however, is not permitted. Otherwise, there would be more extrema than desired or 
else the function would be nontrivial on too small of an interval. Since vlk has 
continuous first derivatives and vanishes outside of the interval [rkm2, rk+*], there is 
an inflection point between each minimum and its join with a part of the r axis. The 
inflection occurs because the derivative of I,Y~ is a continuous function which 
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(b) 

* N-2 * N-l 

A. .--JL 
*** $-4 ‘N-3 ‘N-2 rN-l 

. . . 
rN-4 ‘N-3 ‘N-2 rN- 1 

(d) (e) 

FIG. 3. Schematic form of the simplest C’ interpolation functions for the partition r, < rz < < 
r.v - I . 

monotonically approaches a single extremum value from zero values at the outer 
endpoints of the two respective intervals. Consequently, on each interval, the wk 
tangent line at the extremum cuts the locus of points determined by yk into segments 
on opposite sides of the line; hence, by definition, there is an inflection Ijoint. By 
similar reasoning, there is also a single inflection point between each minimum of vk 
and rk. In total, the function v/~ has precisely four inflection points. The form of the 
most complete interpolation function vk also carries over, in part, to the functions 
associated with each boundary point and its closest partition point. With the closest 
partition points, the interpolation functions are simply truncated versions of the 
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complete function obtained by the removal of one of the endpoint intervals. In Figs. 
3b and d, the functions w2 and )l/~-~, associated with r2 and rNm2 are illustrations: the 
truncation is obtained with the removal of [rkw2, rk- ,) or (rk+ r , rk+ *I, respectively. 
In a similar manner, the endpoint interpolation functions v/, and wN-, are also trun- 
cated. Clearly, [rk-*, rk) or (rk, rk+*] must be removed. Since the maximum value 
does not have to be a local maximum, however, the slope of w, at r, or v,,,-~ at rN-, 
need not be zero. An illustration of these respective functional forms appears in Figs. 
3a and e. 

With the simple functional forms given in Fig. 3, the question remains as to 
whether or not these forms will yield coordinate transformations where uniformity in 
the distribution of constant r surfaces can be specified and where unspecified flat 
spots can be avoided. An application to three dimensions, however, is not a problem 
since a coordinate curve in the variable r can bend out of a plane in a continuous 
manner with a continuous (although not differentiable) Frenet frame. To obtain 
functional forms which are computationally efficient, a piecewise polynomial 
representation of minimal degree will be considered and will lead to an affirmative 
answer to the remaining question above. Since piecewise linear functions cannot yield 
the desired functional forms with continuous derivatives, piecewise quadratics must 
be considered. To further simplify the representation, a minimal number of 
polynomial segments will be assumed. With the quadratics, the minimum number will 
be obtained with precisely two segments between every pair of partition points so that 
the inflection points in the functional forms can be modeled. To ensure that inter- 
polation functions corresponding to distinct interpolation points can be added without 
an increase in the number of polynomial segments on any interval (rk, rk+ ,), a single 
juncture point will be assumed for each interval, independent of any particular inter- 
polation function. For each interval (rk, rk+ i , ) the piecewise quadratics for each inter- 
polation function will now have a single juncture at a point wk = rk + akhk, where 
4 = rk+ I - rk and czk is a fixed real number between 0 and 1. Without any 
constraints, the general piecewise quadratic representations just described will not 
yield the desired uniformity and nonflatness properties. However, since the piecewise 
polynomials have juncture points which are aligned at partition points rk and at the 
internal points wk = rk + akhk, conditions for uniformity and nonflatness can be 
applied at such points. The result will be the class of all piecewise quadratics with the 
desired properties. Moreover, the existence of this class of functions will remove any 
requirement for the interpolation functions to be nontrivially defined over larger 
intervals. Consequently, the possibility of the larger intervals can be deleted from 
Theorem 1. 

PIECEWISE QUADRATIC INTERPOLATION FUNCTIONS 

The piecewise quadratic representation described in the previous section will now 
be explicitly derived. Although a direct derivation would be possible, an easier and 
clearer method is to derive first the derivative functions and then obtain the inter- 
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polation functions by integration. Since the piecewise quadratic functions have 
continuous first derivatives, the derivative functions are clearly continuous piecewise 
linear functions, and consequently, have the advantage of being completely specified 
by their function values at junctures between their linear segments. In Fig. 4, the 
piecewise linear derivative functions are illustrated in an order that corresponds with 
the functional forms of Fig. 3. With the exception of the boundary functions y/I and 
V/N-l, the derivative evaluations t&(t,J must vanish so that each interpolation 

Cd) (e) 
FIG. 4. Derivatives of the piecewise quadratic interpolation functions defined from the interlaced 

mesh rl < W, < r2 < ... < wN-> < rNm, and in correspondence with the functional forms illustrated in 
Fig. 3. Partition points rk (. ) and intermediate juncture locations wk (A). 
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function wk is centered about a local maximum at its corresponding partition point 
rk, as illustrated in Figs. 3b-d and 4b-d. The maximum values for the boundary 
functions, however, need not be local maximums in the sense of vanishing derivatives. 
These nonvanishing derivatives are illustrated by the replacement of the dashed line 
by the solid line in Figs. 4a and e. Since I+V~ must vanish at partition points unequal to 
rk, the derivative function w; must integrate to zero over the intervals [rkP2, rk-, ] 
and b-k+Ivrk+2 ] whenever they are defined. The consequence is a relationship 
between the nontrivial function values of & at mesh points on these intervals. The 
relationship is expressed in the following lemma: 

LEMMA 1. Let v/~ be the piecewise quadratic interpolation functions defined on 
the interlaced mesh r, < w, < r2 < .a. < r,-, < wNp2 < r,,-,, where wk = rk + a,h, 
with h,=r,+,-rk and 0 < ak < 1 for k = 1, 2 ,..., N - 2. Then the derivative 

functions I&, centered at r,, satisfy the left of center relationships 

vXwk-J = 41 - ak-J bWk-JT 

for k = 3,4,..., N - 1; and the right of center relationships 

(34 

v;(wk+ 1) = -ak+ 1 vi@k+ 1>, Pb) 

for k = 1, 2 ,..., N - 3. 

Proof: From an examination of the derivative functions & which are illustrated 
in Fig. 4, the functional forms to the right of center are observed to be reflections of 
those on the left: the reflections are about the form centers and about the r axis. In 
particular, the right of center relationship is just the reflected image of a left of center 
relationship. Consequently, it is sufficient to consider only the left of center case 
which is illustrated in Fig. 5. For simplicity, the notation a = -~&+~(r~ + a, h,) > 0 

FIG. 5. A part of a derivative function on the left. 
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and b = I&+ 2(rm+ i) > 0 is used. In terms of this notation and the point x where I& + z 
crosses the r-axis, the areas of the right hand triangles in the figure are given by A, = 
aa, h,/2 and A, = a(x - r,,, - a,,, hJ2 below the r axis and by A, = b(r,+ , - x)/2 
above the r-axis. To complete the calculation of the areas, the point x must be 
obtained from the linear equation 

v&+~(x) = [(a + b)/(l - a,,,) h,] [x - r,,, - a,h,] - a = 0. (4) 

By substitution for x, the last two areas now become A, = a*(1 - a,,,) h,/2(a + b) 
and A, = b2(l - a,) h,/2(a + b). Since ly m+ 2(rm+ i) = 0, the area A 1 + A, below the 
r-axis must be equal to the area A, above it. Upon simplification, the equation 
A, + A, = A, then reduces to a = (1 - a,Jb, which is the desired relationship 
corresponding precisely to the first equation when expressions for a and b are 
substituted and when m = k - 2. 

In addition to the relationships given in the above lemma, yet one more 
relationship must be established in order that ‘l/k vanish at all partition points except 
rk. The final relationship from the partition point vanishing condition is given by the 
following: 

LEMMA 2. Let wk be the piecewise quadratic functions over the interlaced mesh of 
Lemma 1 as illustrated in Fig. 3. Then the function maximum vk(rk) = max, vk(r) is 
a positive quantity that is given by both 

and 

vk(rk) = -fhA(l - 4 vXrk+J + v;((wk)ly (5b) 
for 1 <k<N-1 andby 

v,(r,) = -?ih,b, wlW + wl(wd + (1 - ad vXr2)l (5c) 

and 

wN-,kd= ShN-2[aN-2vG-IkN-2) + v/L~(w~-~) + (1 -c2) ~h-~(r,-dL (54 
for the respective endpoints. 

Proof. Suppose that 1 < k < N - 1. Then since vk(rk- I) = Wk(rk+ I) = 0, an 
application of the fundamental theorem of calculus implies that the integral of I& 
from rk-, to rk+, must vanish. Moreover, since t&(r) is positive for rk-, < r < r,, and 
negative for rk < r < rk+, , the maximum of wk is given by 

vk(rk) = j’” -r/i+1 
I//;(X) dx = - 

J v;(x> dx. 
‘k-1 
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From an observation of Figs. 4b-d, each integral is equal to the sum of a triangular 
and a trapezoidal area. Upon substitution of each sum, Eqs. (5a) and (5b) result. 

Now consider the endpoint function wr associated with r,. Since v,(r,) vanishes, 
an application of the fundamental theorem of calculus yields the integral represen- 
tation 

W,(r,) = -jr’ w;(x) dx. (7) r1 
Eq. (SC) is then obtained from an evaluation of the integral as the sum of the two 
trapezoidal areas which are evident upon examination of Fig. 4a. By a similar 
argument, Eq. (5d) is obtained for the endpoint function V/N-, associated with rN- 1 
and with the derivative illustrated in Fig. 4e. 

Under the constraints derived above, the class of piecewise quadratic functions 
satisfy the required interpolation conditions but may fail to satisfy any specification 
for either local or global uniformity in the distribution of coordinate surfaces with 
constant r. Consequently, further constraints must be considered so that such 
specifications of uniformity will be possible. These constraints, unlike the previous 
ones, will result in relationships between distinct piecewise quadratic functions. In the 
multisurface transformation, the uniformity is along each coordinate curve in the r 
variable; it is measured by projections onto line segments, the arc length of which can 
be used as a yardstick to indicate locations in the spanwise direction between 
bounding surfaces. For uniform conditions to exist, [ 1, Theorem 1 ] must be satisfied. 
In particular, the interpolation functions must satisfy Eq. (2), or equivalently, the 
derivative of Eq. (2) which is given by 

N-’ v;(r) = o 
k=lV/ko * c (8) 

Since the multisurface transformation (Eq. (1)) remains unchanged when the inter- 
polation functions are multiplied by real numbers, there is no loss of generality in 
setting 

which can be obtained by a selection of suitable factors. When Eq. (9) is substituted 
into Eq. (8), the uniformity condition reduces to the simple form 

N-l 

z, va-1 = 0. (10) 

For the piecewise quadratic representation, the sum in Eq. (10) is a continuous 
piecewise linear function with junctures between segments only at points of the 
interlaced mesh, illustrated in Fig. 4. The vanishing condition now reduces to a 
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requirement that the sum vanish at each point of the interlaced mesh. Due to the local 
definition of the interpolation functions, the sum contains only three terms on the 
endpoint intervals [ ri , r2) and [r,,- z, rN- ,] and four terms on the interior intervals 
[ rk, rk+ ,) for k = 2,..., N - 3. Upon evaluation at the partition points, the uniformity 
condition becomes 

wl(r,) + dr,) = 0, (114 

vLh- J + wh- ,h- J = 0, (1 lb) 

for endpoints and 
w;XrA+ v/;+lPk)=Oy (1 lc) 

for k = 2, 3,..., N - 2. There are only two terms in each of these equations, since the 
possibly remaining terms each vanished, as can be observed from Fig. 4c. By 
contrast, the evaluation at the juncture points (w, , w2,..., w,,-J contains a 
contribution from each possible term. The uniformity condition here is then given by 

wl(w,) + VXW,) + Y/S(w,) = 03 (12a) 
G3(%-2) + vi;-AWN-2) + vL,(w,-*I = 03 (12b) 

for endpoint intervals and 

v;-l(wk)+ w;twiJ + W;+l(wk) + V/l+*(wk)=o~ (12c) 

for k = 2, 3,..., N - 3. By use of Lemmas 1 and 2, the evaluations at the juncture 
points can each be expressed in terms of partition point evaluations of the inter- 
polation functions and their derivatives. When the resultant expressions are then 
combined with the unformity condition for partition points (Eq. (1 1)), the sequence of 
equalities of Eq. (9) can be retrieved as a check on consistency. The admissibility and 
application of uniformity can now be summarized in the following form: 

THEOREM 3. Either local or global uniformity in the distribution of constant r 
coordinate surfaces can be specified with the piecewise quadratic interpolants which 
satisfy the sequence of equalities in Eq. (9) and the derivative conditions in Eqs. (11) 
and (12). Uniformity is then spe#ed by a direct application of Eqs. (5b) and (9) 
from [ 1, Theorem 11. 

THE EXPLICIT CONSTRUCTION OF THE PIECEWISE 
QUADRATIC INTERPOLATION FUNCTIONS 

With the interpolatory and uniformity constraints just given, suitable piecewise 
quadratic functions can now be explicitly constructed for the multisurface transfor- 
mation. To simplify the algebraic expressions, some notation will be introduced. In 
particular, let the sequence of equalities from Eq. (9) be denoted by 
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A = Wkkkh Pa) 

for k = 1 ,..., N - 1; let b,- , = WA- ,(rN- ,); and let 

b, = w;+ 10-d (13b) 
ck = -d(wk)v 

dk+ I = d+ I(wk), 

(13c) 

(134 

for k = 1, 2,..., N - 2, where as before the juncture point (wk) evaluations can be 
taken from Lemma 2. From Fig. 4, it is clear that each of the notations is a positive 
number. From Eq. (11) for the uniformity condition at partition points, it is also clear 
that b, is associated only with the partition point rk for each k rather than any 
specific interpolation function. As a consequence, b, should be proportional to the 
curvature at rk on the coordinate curves in the r variable since it would then appear 
as a linear multiplier in the second r derivative of the multisurface transformation 
evaluated at rk. For further notational simplifications, let 

and 

1; = (w&l, rk], (144 

I,+ = @k, wk], (14b) 

be the intervals on either side of rk for k = 2, 3,..., N - 2. To complete this notation, 
let Z: = [rl, wr] and I;-, = (wNe2, TN-,]. Since the interpolation functions at and 
near the boundaries differ slightly from the general form, the construction of the 
general form shall precede the others throughout the development. With this ordering, 
the analytic expression for the derivative of the general interpolation function, 
illustrated in Fig. 4c, is obtained directly from the function values on the interlaced 
mesh. In terms of the established notation, the result is given by 

vG(r) = -[cl - ak-2) bk-l/ak-2hk-21(r- ‘k-d, on Zk+-*, 

=bk-l[l - !(2-ak-2)/(1 -ak-2)hk--21(rk-l +I9 on I;-, , 

= [(dk-bk-I)/ak-lhk-Il(r-rk--l)+bk-I, on Zk+-l, 

= @k/t’ - O1k) hk- I)(rk - I)9 on I;, 

= -@kbkhk)@ - rk)9 on Z:, (15) 

= [(b/c+, -ck)/(l -ak)hkl(rk+I -r)-bk+19 on I;+,, 

=bk+I[((l +ak+~)/ak+lhk+l)(r-rk+l)- lly on C+ ,, 

= [a k+lbk+l/(l -ak+dhk+Il(rk+2-r)9 on Ii+,, 

= 0, otherwise. 
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Suitably truncated versions of this function are also valid for k = 2 and N - 2 in 
correspondence with Figs. 4b and d. For k = 1 and N - 1, however, in correspon- 
dence with Figs. 4a and e, a line segment has been changed. In the case of k = 1, the 
new segment is given by 

wlW= [(b,-c,)/a,h,l(r-r,)-6,, (16) 

on Z:. On the remaining intervals, w; is given by the general form above. Similarly, 
I&.-, is given by 

on I;-, and assumes the general form elsewhere. With the notation of Eq. (13) and 
the results’ of Lemma 2, the derivative evaluations at wk are given by 

c,=(2A/h,)-a,b,-(I-a,jb,, 

dN-, =(2A/hN-2)-aN-2bN-2-(l -a,+,)b,-,, 

(184 

(18b) 

and 

ch = (u/h,) - (1 - ak> bk+ I 1 

dk=(2Alhk-,)-ak-,bk-,, 

(18~) 

(184 

for k = 2, 3 ,..., N - 2. 
To obtain the desired piecewise quadratic interpolation functions, each of the 

continuous piecewise linear derivative functions must be integrated. For k between 3 
and N - 3, the result is given by 

v,(r) = -W -ah-2)bk-L/2ak-2hk-21(r- rk-d2, 

= [(2-a,-,)b,-,/2(1+a,-,)h,-,l(r,-,-r)’-b,-,(r,-,-r), 

= [(dk-bk-L)/2ak-lhk-,](r-rk-,)2 -t-b,-,(r-rk-,I, 
= (-dk/2(1 - ak- 1) hk- I)(rh - r)* + A, 

= (-ck/2ak hh)(r - rk)* + A? 

= [@h - bk+ J/2(1 - ak> hklO-k, 1 - r)* + bk+ I@h+, - r>, 

= [(I +a k+,)bk++ k+lhk+ll(r-rh+l)2-bk+l(r-rk+1)~ 

= 
-[a k+lbh+L/2(1-ak+l)hh+ll(rh+2-r)2~ 

= 0, 

onI:-,, 

onI;-,, 

on I:-, , 

on I;, 

onI:, (19) 

on G+ , , 

on I,+, , , 

onl- k+2, 

otherwise, 
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which is continuous up through first derivatives and is illustrated in Fig. 3c. For 
k = 2, N- 2, the interpolation functions are just suitably truncated versions of the 
general function and are illustrated in Figs. 3b and d. 

In the special case when k = 1, a direct integration yields 

w*(r)= [VJ, -c1Y2~,~,l(~-~,)2 -b,(r-r,) +A (20) 

on Z:, where the constant of integration was obtained from the condition w,(‘,) = A. 
On the remaining intervals, w, coincides with the genera1 form with k = 1 and is 
easily seen to be continuous up through first derivatives at r, + a, h, upon 
substitution for c, from Eq. (1 Ba). Similarly, for k = N - 1, an integration yields 

on Z;-, which is joined to the general form with k = N- 1 to obtain vN-, as a 
function with continuity up through first derivatives. The interpolation functions v/, 
and vN-, are illustrated in Figs. 3a and e, respectively. 

To obtain the multisurface transformation (Eq. (la)), the integrals Gk(r) in 
Eq. (1 b) must be computed for k = 1, 2 ,,.., N - 1. The computations involve a direct 
substitution and a subsequent integration which requires some algebra in the deter- 
mination of appropriate constants of integration for each quadratic segment. In the 
general case when 3 < k <N - 3, the result is given by 

G,(r) = 0, for r< rk-2, 
= -I(1 - ak-2) bk-,/6ak-2hk-21(r - rk-2)3, on Zki_2, 

=-- P-a,-*lb,-, (rk-1-r)3+bk-, 
60 - ak-2) hkw2 -+r,-, -r)* +G;(r,-,I 

on I;-, , 

= ~k~,~;~_l, (r - rk-,)3 + * (r--k-1)2+Gdrk-l) 

= (4&l - ak-,) h,-,)(r, - r>3 -A(r, - r) + G,(r,) 

= -(cd%h,)(r - r,J3 + A(r - rk) + G,(r,) 

on I;, 

on Zl, 
(22) 

b k+l -‘k 

= 6( 1 - ak) h, (rk+’ - 
r)3 - *b-k+, - ‘-1’ + G&k+,) on I;+, , 

(l+ak+~)bk+~ cr-rk+,j3-bk+~ 

= 6a h -+r-rk+I 1’ + Gk(rk+ I> On I,++, , 
k+l k+l 

= (a k++k+d6(1-ak+hhk+&‘k+2-r)3+Gk(rk+2) on Z,L+,, 

= Gk(rk+ 2) for r> rk+2, 
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where 

Gk(rk-A=-;(1 -a,-,)b,-,h:-,, 

Gk(rk)-Gk(rk-,)=;A(2-ak-I)hk-,+dak-,bk-,h:-1, 

G,(r,+,)- Gk(rk)=i41 + %Jb+b(l -ak)bk+lhi7 

(234 

Pb) 

(23c) 

and 

Gk(rk+2)-G~(rk+L)=-%ak+Ibk+1h:+I. (234 

When k = 2, the general formulation above is modified by removing the first three 
entries and setting G,(r,) = 0. Similarly, for k = N- 2, the last three entries are 
removed and the last increment (Eq. (23d)) for integration constants in Eq. (23) is 
deleted. When k = 1, a direct integration of Eq. (20) yields 

G,(r)= [(b,-~,)/6a,b,](r-r,)~-~b~(r-r,)~+A(r-r,), (24) 

on I:, where the constant of 0 was chosen to satisfy G,(r,) = 0. On the remaining 
intervals, it coincides with the last four entires of the general form, except with 
different constants of integration. From a direct integration, 

G,(r,) - G,(r,) = fA(1 + a,) h, + i(l - a,) b,h: - ia,b,h:, PW 

and from the general form 

G,(r,) - G,(r,) = -da,b,h:, Pb) 

which together yield the necessary constants of integration. On the other side when 
k = N- 1, the integral coincides with the first four entries of the general form 
including the constant of integration 

G,-,(r,-,) = -d(l - aN-3> b,-,hi-,. 

By integration of Eq. (21), the last segment becomes 

(26) 

G,-,(r) = dN-l -b-l 
6(1- aN-*) hN-, 

(rN- 1 - r)3 + fbN- I@,,- I - r)’ 

(27) 

over I;-, . The constant of integration, determined by continuity, is given by 

-@ -a,-,)b,-,h,:-,, (33) 

which completes the computation of the integrals of the interpolation functions. An 
illustration of these results is given in Fig. 6, which has a format in correspondence 
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=1 r2 r3 r4 . . . r1 =2 =3 ‘4 ... 

(a) b) 

c: 
k 

Cd) (e) 

FIG. 6. Integrals of the piecewise quadratic interpolation functions. 

with the previous displays given in Figs. 3 and 4, respectively. The general form in 
Fig. 6c is seen to leave 0 at rke2, decrease to a local minimum at rk- i , increase to a 
local maximum at rk+, , and decrease to a saturation value of G,(r,- ,) at rk+ *. In 
the other parts, truncated versions of the general form are vertically lifted or dropped 
so that each is smoothly connected to the r axis. 

PARTITION POINT EVALUATIONS 

In the case of Co interpolants, the partition point evaluations were especially 
valuable since a simple geometric interpretation was available, namely, that the coor- 
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dinate curves in the r variable passed through or touched line segments determined by 
the basic constructive surfaces in the multisurface transformation (Eq. (1)). When the 
evaluations were combined with curvature properties, there was a corresponding 
approximation property where convexity and monotonicity were preserved from the 
data given by points on the constructive surfaces with a fixed t. Moreover, when the 
simple geometric interpretation of the evaluations was used to interchange 
constructive surface data with the evaluations, a comonotone and coconvex inter- 
polation scheme was obtained. In a similar vein, the partition point evaluations will 
be pursued for the case with C ’ interpolations and with a goal which is only to 
obtain a simple geometric interpretation. 

When the integrals (Eqs. (22~(28)) of the local C’ interpolants are inserted into 
the multisurface transformation (Eq. (l)), the collapsed form 

mt2 
P(r, t) = P,-,(t) + \’ Gkw 

L-I Gk,- J 
Pk+ I@) - P/D)1 (29) 

is obtained for r,,, < r < r,,,+ , . In parallel with the earlier Co case, the surface P,(t) 
and the first m - 2 terms in the sum telescopically collapsed into P,-,(t), while the 
last (N - 1) - (m + 2) terms vanished for the given values of r. Since G, + 2(rm) = 0, 
the evaluation of Eq. (29) at the partition point r = r,,, contains only the first three 
terms in the sum. Upon rearrangement, the result becomes 

P(r,, t) = W, f 
L 

Gm- ,(rm) 
Gm-ArN-J 

- 1 Pm-Pm-,1 J 

- (304 

where 

Wm = [I- ~Gm(rm)lGm(rN-,))l Pm + (G,(r,)lG,(r,- A> Pm+, , POb) 

and for simplicity of notation, the t dependence is not explicitly displayed. Since the 
coefftcients in the expression for W, are bounded between 0 and 1 and sum to unity, 
the point W, lies on the line segment between P, and P,, i for each fixed value oft. 
From Eqs. (22~(28) or by direct observation of Fig. 6, G,-,(r,)/G,-,(r,- ,) is seen 
to be slightly greater than unity and G,, ,(r,,J/G,+ I(r,,,- ,) is seen to be a small 
negative number. As a consequence, the partition point evaluation in Eq. (30a) is 
geometrically computed by locating the point W, on the above line segment and 
adding to it two small vector quantities respectively in the positive P, - P, _ i and 
P m+1 - Pm+2 directions. An illustration of this geometric interpretation is given in 
Fig. 7. The principal difference from the earlier Co case lies in the addition of the two 
small vector quantities. 
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FIG. 7. Geometric construction of a partition point evaluation. 

LOCAL Cm INTERPOLATION FUNCTIONS 

Local interpolation functions for the multisurface transformation (Eq. (1)) have 
been constructed as functions with Co and C ’ smoothness, respectively. In correspon- 
dence with an increase in required smoothness, the size of the local region of 
nontrivial values had to be increased for each interpolation function. In particular, 
when smoothness was increased from Co to C ‘, a local region determined by three 
consecutive partition points had to be increased by the addition of a partition point 
on each side. That is, three consecutive points determining an interval had to be 
replaced by five. With further demands for smoothness, it is reasonable to expect the 
above pattern to continue, with the extension of the local region by a partition point 
on each side for every added level of differentiability. In Fig. 8, the sequence of 
general interpolation functions are graphically displayed in correspondence with a 
noted level of smoothness. Basic requirements for canonical interpolation (vk(rj) = 
vk(rk) 6,) and for simplicity are evident from the illustrations. By contrast, 
uniformity requirements are more subtle and cannot be readily illustrated in the 
graphs of function values. To see this, recall that in the C ’ case, uniformity in the 
distribution of constant r surfaces was clear only by examination of second 
derivatives. In continuation, the sequence of local interpolation functions can be 
extended to infinity for C” smoothness. To see how the extension can be accom- 
plished, consider the case where the variable r is uniformly partitioned by setting 
rj =j/2~2 for all integers j and for a real number R. With the uniform partition, the 
functions 

y,Jr) = sin 7r(2fir - k)/7r(2Qr - k) (31) 

clearly satisfy a canonical property vk(rj) = 6, and can be considered as local inter- 
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co mixrpolant 

*k 

t 

rk-l *k ‘k+l 

c’ Interpolant 

---Lb-- 
‘k-2 =k-1 ‘k ‘k+l 5 +2 

FIG. 8. Sequence of local interpolation functions in the order of increasing smoothness. 

polations since the influence of each is locally concentrated at its center. The 
graphical form of Eq. (31) is easily seen to be a direct continuation of the truncated 
forms illustrated in Fig. 8, when a uniform partition is assumed. The interpolated 
vector field, as an extension of the earlier case, is then given by 

w-7 t) = ,f V/k09 v,(t), 
k=-m 

(32) 

where each V,(t) is given by [ 1, Eq. (3)]. The statement in Eq. (32) is just a vector 
field version of the sampling theorem which is valid only when the vector field 
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components are band-limited functions, each with a bandwidth less than a. That is, 
the bilateral Fourier transform must be bounded in absolute value by R for each 
vector component. For more details on the sampling theorem for functions, an 
excellent presentation is given by Hamming [3]. When Eq. (32) can be integrated 
term by term, the multisurface transformation becomes 

P(r,t)= f k= --oo g$ P,+ At) - Pk(f)lY 

where 

Gk(r) = ,f yk(x) dx. WI 
-co 

With the interpolation functions of Eq. (31), it is clear that all Gk(oo) are equal. In 
addition, the infinite number of constructive surfaces Pk(t) can be chosen for coor- 
dinate generation on either bounded or unbounded regions. Moreover, the infinite 
case given in Eq. (33) is applicable to all interpolants studied herein, such as those 
illustrated in Fig. 8 or of the type in Eq. (31). 

CONCLUSION 

Coordinate generation techniques with precise local controls have been derived and 
analyzed for continuity requirements up to both first and second derivatives and have 
been projected to higher level continuity requirements from the established pattern. 
The desired precision of the local controls was obtained when a family of coordinate 
surfaces could be uniformly distributed without a consequent creation of flat spots on 
the coordinate curves transverse to the family. Relative to the uniform distribution, 
the family could be redistributed from an a priori distribution function or from a 
solution adaptive approach, both without distortion from the underlying transfor- 
mation which may be independently chosen to fit a nontrivial geometry and topology. 
To explicitly demonstrate the basic power that comes with the precise local controls, 
examples have been given in Eiseman [ 1 ] for systems about airfoils and in Eiseman 
[4] for a smooth transition from a Cartesian structure to a polar one. In addition, 
further examples will also be presented when the associated automatic mesh 
generation algorithm is presented. The algorithm was developed under NASA Lewis 
Research Center Contract No. NAS3-22117 and was based upon the theory 
developed herein. 
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